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atoms in the asymmetric  unit, is almost a factor of  
five larger than any structure that  has previously been 
determined without  the use of  i somorphous  or 
molecular  replacement  or anomalous  dispersion. 
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Abstract  

An energy-conservat ion relat ion is derived between 
the power absorpt ion,  energy flux and absorpt ion 
coefficient of  an arbitrary fundamenta l  mode in the 
n-beam dynamica l  theory of  X-ray diffraction. From 
this relation, it is proven that  the 4n fundamenta l  
modes selected by arbitrary incidence condi t ions  are 
evenly divided into two types. The types are distin- 
guished by the sign of  their  absorpt ion coefficient and 
by the sign of  their  energy flux through a plane of  
constant  absorpt ion.  In a bounded  crystal, they rep- 
resent reflected and refracted beams. It is notewor thy  
that  these results apply for arbitrary n, even though 
the solut ion of  the n-beam equat ions only satisfies 
Maxwell 's  equat ions in the limit of  infinite n. In this 
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limit, the energy-conservat ion relation is equivalent  
to Poynting 's  theorem. 

Introduct ion  

It is known that  the fundamenta l  modes in the 
dynamical  theory of  X-ray diffraction may represent  
reflected as well as refracted beams. However,  
because the index of  refract ion for X-rays is nearly 
1, reflected beams are usually negligible. An except ion 
is two-beam Bragg diffraction from a thin-crystal  plate 
(Zachariasen,  1945). For each state of  polar izat ion,  
a reflected and a refracted mode are excited. If  the 
plate is sufficiently thin,  interference between the two 
beams strongly modulates  the rocking curve. As the 
thickness increases, the modula t ion  rapidly disap- 
pears because the refracted beam is strongly damped  
by extinct ion and absorpt ion  before it is reflected 
from the exit surface. The absorpt ion coefficients of  
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the refl¢cted and refracted modes, defined as the 
imaginary part of the normal component of their wave 
vectors, have opposite signs, ensuring that all modes 
are damped as they propagate. 

The purpose of this paper is to prove that the 
fundamental modes of n-beam dynamical diffraction 
are evenly divided between reflected and refracted 
modes. Mathematically, the two types of modes are 
distinguished by the sign of their absorption 
coefficient and the sign of their energy flux through 
a plane of constant absorption. Since absorption and 
energy flux are related by energy conservation, it is 
not surprising that the proof which follows is based 
on an energy-conservation relation. This relation has 
not appeared previously in the dynamical-diffraction 
literature, even though properties of the Poynting 
vector have been studied extensively [see review arti- 
cles by James (1963) and Batterman & Cole (1964)]. 
Collela (1972, 1974) has offered an explanation why 
the absorption coefficients should be evenly divided 
positive and negative, but a rigorous proof is missing. 

The standard treatment of two-beam Laue diffrac- 
tion apparently contradicts the above thesis, since it 
predicts two refracted modes and no reflected modes 
for each state of polarization. However, a rigorous 
analysis predicts four fundamental modes (Ashkin & 
Kuriyama, 1966; Farwig & Schurmann, 1967; Kishino 
& Kohra, 1971). The standard treatment simply 
ignores the two reflected modes because normally 
they are very weakly excited. Aleksandrov, Afanas'ev 
& Stepanov (1984) have proven that the absorption 
coefficients of these four modes are evenly divided 
positive and negative. However, their method cannot 
be applied to n-beam diffraction, because it would 
require an algebraic solution of a greater than fourth- 
degree polynomial equation. 

If the above thesis were false, the n-beam boun- 
dary-value problem for a semi-infinite crystal would 
not have a unique solution. As discussed by Colella 
(1974), the boundary conditions at the incidence sur- 
face are 4n inhomogeneous linear equations whose 
unknowns are the amplitudes and polarizations of n 
external reflected beams and the amplitudes of the 
4n fundamental modes selected by the incidence con- 
ditions. For a semi-infinite crystal, the reflected 
fundamental modes must be excluded. Then the 4n 
equations contain m +2n unknowns, where m is the 
number of refracted fundamental modes, so a unique 
solution exists only if m = 2n. Thus, the number of 
reflected and refracted modes must be equal. 

An energy-conservation relation 

In the theory of dynamical diffraction (James, 1963; 
Batterman & Cole, 1964), the complex representation 
of the displacement field inside the crystal is 

D(r,t)=EDGexp[i(kG.r--tot)], (1) 
G 

where the summation is over all reciprocal-lattice 
points G of the crystal. The angular frequency to is 
given, while the complex field amplitudes Dc and the 
complex wave vectors kc are to be determined. The 
wave vectors are related by kc = ko+G,  where the 
point O is the origin of the reciprocal lattice. The 
boundary conditions on the incidence surface require 
that n x ko--n x ki, where n is a unit vector normal 
to the crystal surface and ki is the wave vector of the 
incident beam. Replacement of D in (1) by E, B and 
H gives the complex representations of the other 
electromagnetic fields. Substituting these representa- 
tions into Maxwell's equations and equating Fourier 
coefficients, one gets 

kc x Ec = (co/c)Bc (2a) 

kc x Hc = -(w/C)DG. (2b) 

The fields also satisfy the constitutive relations 
B ( r , t ) = H ( r , t ) ,  assumin~ the crystal is non- 
magnetic, and E(r, t )=  e-"(r)D(r, t), where e(r) is 
the complex periodic dielectric function. Equating 
Fourier coefficients in these relations, one gets 

BG = Hc (3a) 

EG = ~ e~;'-G'DG', (3b) 
G' 

where e~;l_c, is a Fourier coefficient of e-l(r). With 
the n-beam approximation, DG and EG are assumed 
to be non-zero at only n reciprocal-lattice points, 
including the origin. Thus, the summation in (3b), 
and all subsequent equations, may be restricted to 
these n points. Standard practice is to expand the 
inverse of the dielectric function in powers of the 
polarizability, neglecting second- and higher-order 
terms since the polarizability is small. Because the 
results herein do not require the polarizability to be 
small, this practice is avoided. 

The energy conservation relation is derived as fol- 
lows. Adding the scalar product of H* with (2a) to 
the scalar product of Ec with the complex conjugate 
of (2b) and eliminating Bc by (3a), one gets 

(w/C)( HG[ ~ -  EG. D*) = 2i Im (ko). E G x H*, 

where the function Im yields the imaginary part of 
its argument. Eliminating E G from the left side of this 
equation by (3b), summing both sides over the n G, 
multiplying by c/8.r, and taking the imaginary part, 
one gets 

-(oo/81r) E ( Ime- '  * )G-G'Dc;.DG' 
G,G' 

where (Ime-~)c_c, is a Fourier coefficient of 
Im e-~(r) and the function Re yields the real part of 
its argument. When n is not parallel to any G, as can 
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always be arranged by an infinitesimal rotation of n, 
this equation is an energy-conservation relation. 
Indeed, it is equivalent to Poynting's theorem (Jack- 
son, 1962), except that the fields in Poynting's 
theorem solve Maxwell's equations, while the fields 
in (4) solve the n-beam approximation. Only in the 
limit of infinite n, when all G are included, are the 
fields identical. 

The interpretation of (4) as an energy-conservation 
relation proceeds as follows. The time-averaged 
Poynting vector S(r), defined as (c/8zr) Re [E(r, t) x 
H*(r, t)], is the product of an exponential factor 
which depends on n.r  alone and a periodic factor. 
Likewise, the average value of S(r) on the plane of 
constant absorption n. r = d, denoted by S.(d),  is gen- 
erally the product of an exponential and periodic 
factor, both functions of d. (Note that this spatial 
averaging procedure differs from the standard one, 
in which the Poynting vector is averaged in one unit 
cell by ignoring absorption.) However, if n is not 
parallel to any G, then the periodic factor becomes 
a constant, because the plane uniformly samples all 
points of the unit cell. In this case, 

S.( d) = exp (-2dn.Im ko) Re [ ( c/8rf ) ~ Ec × H* 

Thus, the net power density flowing into the slab 
bounded by the planes n.r  = 0 and n.r  = ~5, where 
is an infinitesimal, is 

n . [Sn (0 ) -S . (8 ) ] / 8  

= 2 Im (ko).Re [(c/8~r) ~ Ec × H*] .  

But this equals the right side of (4), so by conservation 
of energy the left side must be the power density 
absorbed by the slab and must be positive. Since the 
left side equals the average value of 

-(to/8~r) Im e-l(r)  Dc exp (iG.r)  

over the unit cell, it is indeed positive for arbitrary 
DG, as long as to Im e-l(r)  is everywhere negative. 
Physically, this condition simply demands that 
absorption occur throughout the unit cell. The sign 
of to is a matter of convention, but that of Im e-l(r)  
must be opposite. 

Before (4) is used below, it is necessary to solve 
the dispersion equation in the special case of a con- 
stant dielectric function. Elimination of Ec, Bc and 
Hi; from the system of equations (2) and (3) gives 
the fundamental equation of dynamical diffraction: 

(to/c)2DG = --kG × k<; × ~ e C,~G,DG,. (5) 
G' 

This system of homogeneous linear equations in Dr; 
has non-trivial solutions only when n. ko satisfies the 

associated dispersion equation, which generally does 
not have an algebraic solution. A trivial exception 
occurs when e ( r )=  eo. Then, from (5), the roots of 
the dispersion equation are 

n.ko = - n .  G + [ ( to / c)2eo - In  × k, + n × G[2] '/2. 

In this case, the absorption coefficients lm (n.ko) 
come in pairs of opposite sign, as long as Im eo is 
non-zero. 

Now (4) may be applied to prove the thesis of the 
paper. Suppose that the dielectric function evolves 
continuously from a constant to an arbitrary function, 
with its imaginary part never vanishing. For example, 
the evolving function could be (1-p)eo+pe(r),  
where p varies from 0 to 1. Since the coefficients of 
the dispersion equation are then continuous functions 
of p, so are the absorption coefficients. When p = 0, 
the absorption coefficients are evenly divided positive 
and negative. If the absorption coefficients were not 
likewise divided when p = 1, then at least one of them 
would have to vanish for some value of p. But this is 
forbidden by (4), because th~ left side is always 
positive. Finally, when n is not  parallel to any G, (4) 
shows that the absorption coefficient (n. lm ko) and 
the energy flux through a plane of constant absorption 
[n .S.(d)]  have the same sign. Since the sign of n .S.  
distinguishes the reflected modes from the refracted, 
the number of each must be the same. 

As a fine point, when n is parallel to some G, (4) 
does not fully represent energy conservation, because 
then SR(d) has a factor which depends periodically 
on d. Consequently, the conservation relation must 
also depend periodically on d. Each side of (4) is the 
average value over d of the corresponding side of the 
complete conservation relation. However, the left side 
of the complete relation is not positive for arbitrary 
Dc,  even though to Im e-l(r)  is everywhere negative, 
except in the limit of infinite n when all G are 
included. Thus, it is possible that, for some d, the 
computed absorption coefficient and energy flux 
through a plane of constant absorption have opposite 
signs. 

Summary 
Conservation of energy prevents an absorption 
coefficient from ever vanishing. Since the absorption 
coefficients are evenly distributed positive and nega- 
tive when the dielectric function is constant, they 
must remain so for any physically admissible dielec- 
tric function. Conservation of energy also requires a 
definite relation between the signs of an absorption 
coefficient and the energy flux through a plane of 
constant absorption. These results rigorously estab- 
lish that the fundamental modes of n-beam dynamical 
diffraction are evenly divided between reflected and 
refracted modes. While these results are physically 
intuitive, it is important to recognize that they have 
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been obtained for fields which only approximately 
satisfy Maxwell's equations, and have been obtained 
without requiring the polarizability to be small. 
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Abstract 

The 122 Shubnikov point groups (SPGs) are obtained 
from the 32 ordinary crystallographic point groups 
(OPGs) by taking time inversion into account. Like 
the OPGs, the SPGs can be grouped into 11 Laue 
classes. Tensors can be invariant under space inver- 
sion (stensors), time inversion (ttensors), space- 
time inversion (utensors) or all three inversions 
(i tensors). The restrictions imposed on the form of 
a property tensor by the SPG of the material under 
consideration depend, for i tensors, only on the Laue 
class of the SPG. If these restrictions are known for 
an i tensor, the corresponding restrictions for s, t and 
u tensors of the same rank and internal symmetry can 
be written down immediately for all the 122 SPGs 
and for all orientations in which the SPG under 
consideration appears in the corresponding 
holohedry. These connections provide tests for the 
forms of tensors given in the literature. A number of 
corrections and of possible simplifications are pointed 
out. The results are illustrated by showing how the 
form of the i tensor describing linear electrogyration 
determines the form of the piezoelectric t tensor and 
the piezomagnetic s tensor for all 122 SPGs. Similarly, 
the form of the t tensor describing quadratic elec- 
trogyration is derived explicitly from the i tensor 
describing the piezooptic effect. 

I. Introduction 

The 32 ordinary point groups (OPGs) and the 122 
Shubnikov point groups (SPGs) that are compatible 
with a periodic structure in all three space dimensions 

0108-7673 / 91 / 030226-07503.00 

are often arranged in a two-dimensional table. Its six 
columns essentially correspond to the crystal systems. 
The monoclinic point groups (PGs) appear either in 
the first column together with the anorthic PGs or in 
the second together with the orthorhombic PGs or in 
both in different orientations. PGs having certain 
features in common are placed in the same row. One 
such arrangement is given in International Tables for 
X-ray Crystallography (1952); another, which differs 
in important details (e.g. 7~3m in the same row as 
4mm not as ~,2m), has been proposed by Grimmer 
(1980), who called it the periodic arrangement. It has 
three long columns with PGs in every row and three 
short columns for which PGs are lacking in the same 
rows. He showed that, in his arrangement, each long 
column has the same subgroup structure if subgroups 
appearing several times in different orientations are 
distinguished. The same holds for the subgroup struc- 
ture in the short columns. Groups in a given row have 
certain structural features in common, e.g. having 
space inversion 1, time inversion 1' or space-time 
inversion 1' among their elements or containing such 
inversions only in combination with rotations. In this 
paper it is shown that the restrictions demanded by 
the PG of a material for the form of the tensors 
describing its properties also have features in common 
for all PGs in a given row. These restrictions are 
expressed as usual for the components of the tensor 
in a right-handed orthogonal coordinate system with 
the same length unit on the three axes. Care is taken 
to define completely the orientation of these axes with 
respect to the orientations of the symmetry elements, 
which are expressed by the order of the entries in the 
Hermann-Mauguin symbol. 
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